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In classical neuroimaging, the activity of each voxel is considered separately. However, it was recently demon-
strated that there are significant stimulation-specific differences between adjacent voxels at the group level.
With this approach, the activity of adjacent voxels in the same condition is compared, and the direction of
the highest increase of activity in the neighbourhood of each voxel is established as a gradient vector per
voxel. Using this vector approach, we compared fMRI, EEG and MEG spatial differential activity during different
tasks to see what amount of fMRI differential activity corresponds to the electromagnetic differential activity.
Distributed source reconstruction was used to obtain 3-dimensional models of electric and magnetic activity in
EEG and MEG prior to vector analysis. Using independent datasets, we illustrated that the mean overlap of
the fMRI differential activity with EEG and MEG is 79%. In addition, about 93% of divergence (spatial sources)
in fMRI corresponded to the EEG and MEG divergences. These results correspond to the spatial sum of the
peak activities in EEG and MEG and, further, suggest a link between the spatial and temporal properties of
brain activity. We propose a novel model of activity flows in the brain to explain this link.

KEYWORDS: fMRI, EEG, MEG, Vector Analysis, Spatial Differentiation, Activity Flows.

INTRODUCTION
To study brain function, various neuroimaging techniques
measure the activity of neuroglial populations in the brain
at rest and during stimulation. Due to neuropsychological
traditions, classical neuroimaging primarily focuses on the
existence of global activity in different brain areas. Mathe-
matically, comparisons of activity in individual voxels for
different types of stimulation are realized using various
statistical techniques, from multi-level factor analysis to
the simple t-test [1]. As a result, the classical approach to
brain activity studies relies on the activity differences in
the same voxel under different conditions.
Since the classical approach to brain activity studies

does not address the differences between adjacent vox-
els constituting the internal structure of brain activity, we
developed a new approach that compares activity in adja-
cent voxels under the same conditions. This computation
provides the direction of the highest difference of activity

∗Author to whom correspondence should be addressed.
Emails: kuzma@cerco.ups-tlse.fr, strelkuz@hotmail.com
Received: xx Xxxx xxxx
Accepted: xx Xxxx xxxx

in the neighbourhood of individual voxels. Thus, each
voxel contains a vector pointing toward the direction of
the highest activity difference in its neighbourhood, with
the size of the vector reflecting the size of the increase
(see Fig. 1). Using mathematical terms, we define the
vector that is established per voxel as the gradient vec-
tor. In three dimensions, this method is mathematically
similar to the current 2-dimensional source density anal-
ysis used in electrophysiology [2, 3]. Globally, this anal-
ysis results in maps of gradient vector projections that
can be used to compare experimental conditions. We have
demonstrated that spatial differences (gradients) of activ-
ity between voxels persist in different subjects, resulting
in their significance at group level, even after family-wise
error correction of p-values. We have shown that these
gradients are task-specific [4]; therefore, they specifically
reflect cognitive processes in the brain. Such an observa-
tion strongly suggests that gradient analysis is a promising
alternative method for analysing brain function.
The proposed gradient maps provide novel information

on the spatial organisation of brain activity. We hypoth-
esized that the greatest spatial increase of activity may
occur in the areas where there is a burst of activity in a
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Fig. 1. Illustration of the gradient vector and its projections for the field
of brain activity. (A) Functional neuroimaging represents the brain as a
field of activity with a value per each small volume called voxel. (B)
The gradient vector for each voxel points to the direction of the greatest
increase. Here, for the voxel with energy level of 3 the greatest increase
is in the direction of the voxel with the level of energy 8. The length of
the vector represents the difference 8–3. (C) Each gradient vector can be
considered in its projections on the axes. Here, the projections on the X

and Y axes are illustrated (the projection on the Z axis is taken 0 and
not shown).

specialized neural population and less activity in the input
pathway. A high positive slope of activity increase at the
places of functional inputs to specialized neural popula-
tions was demonstrated by some electrophysiological and
computational studies [5, 6]. At the level of neuromedia-
tors, excitatory interpretations of these high positive slopes
of activity increase are more probable because glutamate-
related processes account for approximately 70% of total
energy turnover [7], while GABAergic processes account
for only about 15% of total energy turnover by neurons
and glia [8]. Thus, the greatest activity increase would
be at the locus receiving the informational input, which
anatomically corresponds to the input from the long- or
short-range connections [9]. Based on this interpretation,
differential analysis, being local by nature, does not con-
sider long-range connections in the brain along their whole
length. These connections are detectable only at their tar-
get points, when they cause an abrupt increase of activity
in the specialized population. One can search for long-
range connections using these target points as seed points
for connectivity analysis [10] at the functional level and for
diffusion tensor imaging [11, 12] at the anatomical level.
The gradient indicates the direction of the abrupt increase

in activity, which, in turn, may correspond to the direc-
tion of the signal input to a specialised population. If the
abrupt activity increase occurs each time after the presen-
tation of a stimulus, one can detect the input direction in
the time-averaged image of brain activity.
Though the above hypothesis seems plausible, the

exact physiological interpretation of the experimentally
observed gradients of activity requires further study to
define the neural support of such gradients. One strategy
to assess the physiology of gradients would be to com-
pare them between different modalities of brain activity
(Functional Magnetic Resonance Imaging (fMRI), Elec-
troencephalography (EEG) and Magnetoencephalography
(MEG)), because the substrates are more or less under-
stood. Though the nature of the Blood-Oxygen-Level-
Dependent (BOLD) signal is not entirely understood, it
may reflect the input and intracortical processing of a given
area rather than its spiking output [13]. Similarly, it is
believed that the postsynaptic potentials of large cortical
pyramidal neurons in deep cortical layers play a major role
in the generation of the EEG [14] and MEG [15].
The fMRI measurement of brain activity is not direct but

is a complex function of oxygen consumption and regional
blood flow [16, 17]. In spite of this complexity of the
BOLD signal, what makes us confident in our approach is
the demonstrated proportionality between the BOLD sig-
nal and human EEG measurements [18, 19]. Besides, the
approximate proportionality between the BOLD signal and
electrical activity, which corresponds to the proportionality
between metabolic and electric energies, was tested locally
in neural populations [20, 21].
These considerations of the nature of the BOLD and

EEG signals with respect to cortical inputs suggest a
rather high spatial overlap between these techniques when
one calculates spatial gradients, which, according to our
hypothesis, emphasizes the directions of cortical inputs.
Given that some dissociations of the BOLD signal and
electrophysiological data are also reported [22], one can-
not expect 100% overlap, but an overlap greater than 50%
can be interpreted as a reasonable result corresponding to
the variable literature data on fMRI-electrophysiological
coupling.
The purpose of this study is to determine whether the

spatial distribution of the gradient vectors derived from
fMRI activity corresponds to the spatial distribution of the
gradient vectors obtained from electric and magnetic activ-
ities. For the whole brain, we expect that the differences
between the neighbouring voxels, as found by the analysis
of gradient vectors, will have similar spatial distribution
among different neuroimaging techniques.
In consequence, in this study we compute fMRI, EEG

and MEG gradient activity maps and spatially compare
them to estimate whether the spatial distribution of gradi-
ents in fMRI activity corresponds to the spatial distribution
of gradients in EEG and MEG, calculated on the basis of
distributed source reconstruction.
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EXPERIMENTAL DETAILS
In this article, we use an exemplary dataset available on
the site of statistical parametric mapping (SPM), which
is commonly used to elaborate comparative methods in
neuroimaging [23–26]. This dataset contains EEG, MEG,
functional MRI and structural MRI data on the same sub-
ject with the same paradigm: a basic comparison of faces
versus scrambled faces. The task was left–right symme-
try judgement [27]. Famous and non-famous (unfamil-
iar) greyscale faces (52 of each) were presented. These
faces were split into two sets of 26 famous (familiar)
and 26 non-famous (unfamiliar) faces (8 female faces and
16 male faces in each set). The faces were presented
for 500 ms, replacing a baseline of an oval chequer-
board present throughout the interstimulus interval, with a
stochastic distribution of stimulus onset asynchrony (SOA)
determined by a minimal SOA of 4.5 s and 52 randomly
intermixed null events. Each stimulus was presented on a
mirror 30 cm above the participant, subtending a visual
angle of ∼ 10�.
For the fMRI data acquisition, the 2-T VISION sys-

tem (Siemens, Erlangen, Germany) was used to acquire
32 T ∗

2 –weighted transverse echoplanar images (EPI) (64×
64 3× 3 mm2 pixels, TE = 40 ms) per volume, with
blood oxygenation level dependent (BOLD) contrast.
EPIs comprised 2 mm thick axial slices taken every
3.5 mm, acquired sequentially in a descending direc-
tion. The EEG data with the same stimulation and task
were acquired on a 128-channel ActiveTwo system; the
MEG data were acquired on a 275-channel CTF/VSM
system.
All data were analyzed with SPM8 following the rec-

ommendations of the SPM8 manual for this dataset.
As a supplementary analysis, we used the fMRI-

MEG data during auditory perception from the study of
Babajani-Feremi et al. [28], subject 07 (please see the
original publication for the details of the experimental
paradigm and acquisition). An analysis similar to that for
the main dataset was applied.
In addition, we decided to include the application of

this analysis to the dataset of the simultaneous fMRI-EEG
pilot study from our laboratory. Although the simultane-
ous fMRI-EEG has some technical problems [29], this
approach is gaining popularity [30] and could be of inter-
est to readers. In this pilot study, a white circle was pre-
sented in the left superior visual quadrant for 6 ms on
a black screen, eccentricity 2.5�, 3.5� in diameter, with a
random SOA of 2–14 s. A Brain Products 64-electrode
EEG cap specially designed for the fMRI studies was
used. In the 3T Philips fMRI scanner, functional scans
were acquired with a single-shot echo planar gradient-echo
(EPI) pulse sequence (TR= 2 s, TP= 30 ms, flip angle=
77�, FOV= 215 mm, matrix= 64×64). An FMRIB Plug-
in for EEGLAB was used to remove the fMRI artefacts
from the EEG, including the pulse/ballistocardiographic
artefacts [31]. It was a passive perception paradigm.

fMRI Data Analysis
The time-series for each voxel was highpass-filtered to
1/128 Hz and realigned temporally to acquisition of the
middle slice. The highpass-filter of 1/128 Hz is provided
by default in the SPM analysis, and we checked that most
of the experimental variance was not removed by this fil-
ter. No other method of physiological noise reduction was
used. Given that the main multimodal dataset used here
is available on the site of SPM, we followed exactly the
pipeline of analysis for this dataset proposed in the SPM8
manual so that it could be easily reproduced.
Images were normalized to a standard EPI template

based in Talairach space and resampled to 3 × 3 ×
3 mm3 voxels. The normalized images were smoothed with
an isotropic 8 mm full-width-at-half-maximum (FWHM)
Gaussian kernel (final estimated smoothness was 10×10×
10 mm3 FWHM). No smoothing was applied to the spa-
tially differentiated images of the fMRI activities. The
implicit SPM mask was applied to all fMRI images.
Gradient and divergence calculations were applied [4]

to the pre-processed fMRI images, leading to the creation
of four images for each pre-processed image: X gradient
image (projection of the gradient vector on the X axis), Y
gradient image, Z gradient image and divergence image.
Separate gradient images for each projection as well as
divergence images were entered into the first-level analysis
with the canonical HRF and time and dispersion deriva-
tives. Thus, four model matrices were constructed. The
t-contrasts ‘faces versus scrambled faces’ and ‘scrambled
faces versus faces’ were defined, resulting in two corre-
sponding contrast images for each model matrix. The con-
trast images were thresholded at p < 0�001 uncorrected
level (in the supplementary datasets, also adjusted to max-
imize the overlap) and used for further comparative anal-
yses with EEG and MEG data. Thus, we used the whole
fMRI time-series and normalized the stimulation-related
activity to the baseline activity.
Numerical gradients with finite difference approxima-

tion are used as implemented in the MATLAB gradient
function. For example, for the x dimension FX= gradient
(F �x); FX�i�= �F �i+1�−F �i−1��/�x�i+1�− �i−1��,
the first and last points are first order approximations:
one is a forward difference and the other is a backward
difference; the points inside the row are second order
approximations.

EEG and MEG Data Analysis
Epochs were defined as a peri-stimulus time window that
started at −200 ms and ended at 600 ms. Artefact rejection
was done by rejecting trials in which the signal recorded
at any of the channels exceeded 200 microvolts relative to
the pre-stimulus baseline.
3D reconstruction was performed by the method of dis-

tributed source reconstruction using a gray-matter mesh
extracted from the subject’s MRI and the Multiple Sparse
Priors (MSP) [25, 32]. This method corresponds to a
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distributed source localisation, where current sources are
estimated at a large number of fixed points within a corti-
cal mesh. Thus, this method permitted overlaying the mea-
surements of electromagnetic fields on the scalp with the
distribution of this field in the 3D brain space, making the
resulting images comparable with the 3D data obtained
by fMRI. In EEG data, we calculated for each voxel the
mean amplitude of the distributed source activity during
the periods of 170–190 ms and 360–380 ms, which cor-
responded to the periods of peak activity. In MEG data,
mean amplitudes were also calculated during the periods
of 170–190 ms and 360–380 ms, and in addition, a third
time point of 380–400 ms was calculated because at some
locations it was separate from the peak at 360–380 ms.
The 3D datasets with peak amplitude per voxel were trans-
formed into images of gradient projections on the X, Y
and Z axes, plus a divergence image for each peak. Thus,
images of gradient projections and divergence images were
obtained for the time points of the source activity in EEG
and MEG. The initial M/EEG images were smoothed with
an isotropic 12 mm FWHM Gaussian kernel. No smooth-
ing was applied to the spatially differentiated images of
the M/EEG activities.

Comparison of fMRI, EEG and MEG Data
First, we created 3D images of distributed sources in EEG
and MEG with mean values in the chosen time windows
at the peaks of activity. Then, gradients and divergence
were calculated in these images. To create the masks of
positive gradient projections, positive values were replaced
with ones and all other values with zeros. To create the
masks of negative gradient projections, negative values
were replaced with ones and all other values with zeros.
Then fMRI images of positive and negative gradient pro-
jections were multiplied element by element by the corre-
sponding mask images.
To calculate the number of active voxels in the non-

masked fMRI images, fMRI images of positive and neg-
ative gradient projections were transformed into ones and
summed up. In the same way, the masked fMRI images
were transformed into ones and summed up. This per-
mitted us to separately calculate the relation between the
number of active voxels in the masked and non-masked
fMRI images for each peak.
As we were interested in the spatial overlap among dif-

ferent peaks in EEG and MEG inside the fMRI areas,
we multiplied element by element the masked fMRI
images corresponding to different peaks and transformed
the results into ones (separately for EEG and MEG). The
sum of the surviving voxels provided the number of voxels
in the spatial overlap.
To obtain the number of voxels in the fMRI differen-

tial activity corresponding to electromagnetic differential
activity, we first calculated a spatial sum of the masked
fMRI images transformed into ones corresponding to the
peaks in the EEG and MEG data. As a result, some of

the voxels had a value of 2; to eliminate this we again
replaced the positive numbers in the images with ones. In
this way, we could avoid calculating the areas of spatial
overlap twice. Finally, the sum of these images was cal-
culated, which provided the number of voxels within the
differential fMRI activity corresponding to the spatial sum
of peaks in EEG and MEG data. The relation of this sum
to the sum of voxels in the non-masked fMRI images was
calculated, which provided the percent of fMRI activity
corresponding to the summary EEG and MEG activities.

Projections Used in the Analysis
As we have recently shown [4], brain activity can be char-
acterized by the different directions of gradient vectors. For
practical purposes, it is useful to consider the significant
projections of these vectors on the three principal axes in
the MNI or Talairach conventions of brain coordinates. In
these conventions, the X axis goes from left to right, the Y
axis goes from back to front and the Z axis goes upwards.
If projections on an axis in a given region are positive, it
implies that the direction of most gradient vectors in this
region corresponds to the direction of the axis. If projec-
tions are negative, it follows that gradient vectors in this
region are mostly in the opposite direction. E.g., when there
are positive projections on the X axis in some clusters, one
can conclude that in these clusters the more rapid changes
of the BOLD signal are in the positive direction of the X
axis (the ‘left-right’ direction). According to our hypothe-
sis of energy flows [4], the predominant direction of energy
flows in these clusters is from left to right.
Positive divergence is observed in the regions where

the summary flow of gradient vectors from the voxels is
outside. We suggested that these voxels may constitute a
source of energy flows for the neuroglial population in
adjacent voxels [4].

Explanatory Model of Energy
Coupling and Energy Flows
Given the average metabolic energy M and electromag-
netic energy E corresponding to each time period from
1 to n, the result can be presented this way (the sign �
means gradient):

�M = k1�E1+k2�E2+k3�E3+kn�En (1)

Here, M as well as indexed E and coefficients k are the
functions of position (with the coordinates x, y, z). This
equation presents a relation between the spatial distribution
of M and the temporal changes in E in the time periods
from 1 to n. As gradients are vectors, the equation can be
rewritten in terms of vector projections on the axes, e.g.,
for an axis x it would be:

�Mx = kx1�Ex1+kx2�Ex2+kx3�Ex3+kxn�Exn (2)

where again Mx as well as indexed Ex and coefficients kx
are the functions of position (x� y� z).

4 J. Neurosci. Neuroeng., 2, 1–12, 2014
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The three projections can be explicitly expressed in the
matrix form:

⎡
⎢⎣
�Mx

�My

�Mz

⎤
⎥⎦=

⎡
⎢⎣
�Ex1 � � � �Exn

�Ey1 � � � �Eyn

�Ez1 � � � �Ezn

⎤
⎥⎦ ·

⎡
⎣
kx1 ky1 kz1
� � �
kxn kyn kzn

⎤
⎦ (3)

This formula corresponds to the practical calculations
we used in this study, but we can try to rewrite it in a
more general form. One can express the electromagnetic
energy En at each time period as a product of the rate
of its change during this period vn and the time period
�t. Always taking the same time period and omitting for
simplicity the coefficients k, we get:

�M ∝ �v1�t+· · ·�vn�t = ��v1+· · ·vn��t

= �
i=n∑
i=1

vi�t (4)

Supposing very small time periods �t, we pass from the
sum to the integral over the whole time of measurement
from time t1 to time t2:

�M�x� y� z�∝ �
∫ t2

t1

v�x� y� z� t��t (5)

Or in the form of projections on the axes and including
the coefficients p:

⎡
⎢⎣
�Mx

�My

�Mz

⎤
⎥⎦= �

∫ t2

t1

⎡
⎢⎣
pxvx

pyvy

pzvz

⎤
⎥⎦�t (6)

Here, indexed v and p are the functions of (x� y� z� t).
This general formula presents the relationship between the
gradients of the average metabolic energy from time t1 to
time t2 and the gradients of electromagnetic energy in this
period. It can be further clarified by a simple consideration.
The average metabolic energy can also be presented as a
sum of the products of its rate of change m over a small
period of time �t, and the whole sum then divided by the
number n of such periods of time:

M�x�y� z�= 1

n

i=n∑
i=1

mi�t (7)

Presenting it in the limit of very small time periods �t
as the integral

M�x�y� z�= 1
t2− t1

∫ t2

t1

m�x� y� z� t��t (8)

we obtain from (5)

�
1

t2− t1

∫ t2

t1

m�x� y� z� t��t ∝ �
∫ t2

t1

v�x� y� z� t��t (9)

leaving only the expressions under the integral

m�x� y� z� t�∝ v�x� y� z� t� (10)

It should be noted that metabolic measurement here is
a measurement of metabolic energy at each time point,
which is potentially possible in future techniques but is not
possible for the BOLD technique at present. The approx-
imate proportionality is demonstrated by several experi-
ments [20, 21]; it can be considered as indirect evidence
for Eq. (6), complementary to the direct evidence from our
results, on which Eq. (6) is based. Correlations between
the BOLD and electric activity varied between the studies
in a range from 0.7 [13] up to 0.9 [18, 19], depending
on the technique used. Thus, the proportionality is only a
linear approximation of more complex processes, which is
why in our explanatory Eq. (6) we have a set of unknown
parameters in the form of coefficients p, which adjust the
equation for each time point. Generative models aim to
provide exact parameters; as a result, relationships between
the electric, metabolic activity and the fMRI signal in these
models are much more complex [33]. On the other hand,
the spatial correspondence shown here between the vecto-
rial representations of brain activity in different modalities
could be further implemented in the generative models to
increase their precision.
It should also be noted that we considered only the

changes of metabolic energy coupled with information
processing. In general, part of metabolic energy is also
used for cellular maintenance unrelated to information pro-
cessing and part is dissipated as heat.
Let us consider the sum (�S) of information-

related metabolic (�M� and electromagnetic (�E� energy
increases in a voxel at a given moment of time (the sign
� for the difference here should not be confused with the
gradient sign ��:

�S = �M +�E (11)

as �M is approximately proportional to �E and metabolic
energy is transformed into electromagnetic. We can also
write this as:

�S = k�E+�E (12)

where k is a certain proportionality coefficient between
information-related metabolic and electromagnetic ener-
gies. Essentially, k shows how much electromagnetic
energy is added to this voxel due to the amplifying input
of metabolic energy. Let us consider three neighbouring
voxels along the X axis (Fig. 5). The first two voxels serve
only to propagate information to the third voxel, where
this information is treated. Signal propagation is realized
by electromagnetic fields. Each time the electromagnetic
signal �E arrives at these voxels, the summary energy
increase �S1 and �S2 in each voxel is approximately
�E; metabolic energy amplifies the electromagnetic signal
very little and the coefficient k is small. However, when
the information-related energy increase �E arrives at the
third voxel, this increase used for propagation becomes
insufficient for information treatment. A high input of
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metabolic energy is required, and is further transformed
into additional electromagnetic energy. Thus, the coeffi-
cient k becomes high, leading to a significant increase
in �S3 in the third voxel. The gradient (energy increase)
along the X axis between the first two voxels is Gr1−2 =
�S2−�S1 and between the second and the third voxel is
Gr2−3 = �S3−�S2. Evidently,

Gr2−3 > Gr1−2 (13)

As in our analysis, the gradient is indicated for each
voxel. In this one-dimensional situation the second voxel
would contain a value Gr2−3. The positive value indicates
that the increase direction from this voxel corresponds to
the positive direction of the X-axis. From Eq. (5), the aver-
age difference in metabolic energy between the third and
the second voxels will be related to the time course of the
electromagnetic energy difference:

�M�x�∝ �
∫ t2

t1

v�x� t��t (14)

Thus, one can see that stable energy gradients between
voxels correspond to the direction of electromagnetic
energy flows to the specialized neuroglial populations
[34]. Metabolic energy is transformed into electromagnetic
energy, amplifying it in the specialized neuroglial popu-
lation (voxel 3 in Fig. 5). Our model is not specific to
the BOLD signal; it aims to explain the brain phenomena
behind the measurement techniques, and we suggest that it
can be applied to any measurement that reflects metabolic
energy turnover in the brain (e.g., PET measurements and
other techniques of brain metabolism measurements pos-
sible in future studies [35]).

RESULTS
The classical analysis of fMRI, EEG and MEG activi-
ties during the face processing task reproduced the same
pattern of activity as in previous studies of this dataset
with maximal activity in the occipital, inferior temporal
and frontal regions (see SPM8 manual, ‘Multimodal face-
evoked responses’ [36]).
The summary whole-brain overlap in the original acti-

vation data was 47% between fMRI and EEG and 34%
between fMRI and MEG. Strelnikov and Barone [4] have
shown that activation maps and maps of differential activ-
ity are totally different. Differential activity is not detected
within the areas of classical activity because absolute val-
ues and differential values represent independent datasets.
We then proceeded with analysis of the spatial differ-

entiation data in order to quantitatively compare its results
among different techniques. First, we compared the spatial
differential brain activity in fMRI and in EEG distributed
source reconstruction spatial maps. The comparison was
performed with respect to the activity observed in fMRI
for the projections of the gradient vector on the X, Y

Fig. 2. Positive directions of the fMRI differential activity correspond-
ing to EEG and MEG. The left column represents the negative projections
of the gradient vectors in the fMRI activity on the X, Y and Z axes in
the MNI space. Time points of 180 ms, 370 ms and 390 ms, around
which EEG and MEG data was sampled, are presented in colours (the
spatial overlap in some regions modifies the initial colours). The percent
indicates the spatial sum of these time points, taking into account their
spatial overlap.

and Z axes according to the MNI coordinate system sep-
arately for the positive and negative directions of each
axis. For both the positive and negative directions, the sig-
nificant gradient vector projections in the fMRI activity
were detected in the occipital and inferior temporal regions
bilaterally (Figs. 2, 3).
For the positive directions of X, Y and Z, the EEG

activity overlapped, respectively, at 74%, 87% and 82%
with the fMRI activity, taking into account the overlaps
among the peaks (Table I, Fig. 2). As for the negative
projections on these axes, the respective values are 91%,
89% and 93% (Table I, Fig. 3).
Concerning the divergence (spatial sources) of gradient

vectors (Table III, Fig. 4), the spatial distribution of the
first EEG peak corresponded to 70% and of the second to
38% of the divergence in fMRI. With an overlap of 17%,
the overlap of divergence with fMRI was 95%.
Thus, depending on the direction of the gradient projec-

tion, 74–93% of the fMRI differential activity overlapped
with the EEG differential activity. The percent of the EEG
divergence overlapping with fMRI was even higher at
95%.
Next, we compared the spatial differential brain activity

in fMRI and in MEG distributed source reconstruction spa-
tial maps in a similar manner. This comparison was also
performed separately for the positive and negative direc-
tions of each axis with respect to the activity observed in

6 J. Neurosci. Neuroeng., 2, 1–12, 2014
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Fig. 3. Negative directions of the fMRI differential activity correspond-
ing to EEG and MEG. The left column represents the negative projections
of the gradient vectors in the fMRI activity on the X, Y and Z axes in the
MNI space. Time points of 180 ms, 370 ms and 390 ms, around which
EEG and MEG data was sampled, are presented in colours. The percent
indicates the spatial sum of these time points taking into account their
spatial overlap.

fMRI for the projections of the gradient vector on the X, Y
and Z axes according to the MNI coordinate system. The
main difference for the EEG is that due to the variability
of the peak corresponding to the second peak in the EEG,
the third peak was also included in the analysis.
Thus, regarding the positive directions of axes X, Y

and Z, the MEG activity overlapped at 77%, 81% and
76% respectively with the fMRI activity, taking into
account the overlaps among the three peaks (Table II,
Fig. 2). As for the negative projections on these axes, the

Table I. Percent of the fMRI differential activity corresponding to the
EEG differential activity.

Peak 1 (%) Peak 2 (%) Overlap (%) Total (%)

Positive directions

X 48 40 28 74
Y 42 53 21 87
Z 48 52 36 82

Negative directions
X 39 72 50 91
Y 59 42 21 89
Z 57 57 35 93

Notes: X, Y , Z indicate the images of the projections of the gradient vector on the
axes, in positive and negative directions. Peak 1 of EEG activity corresponds to
170–190 ms and Peak 2 to 360–380 ms. Overlap is indicated with respect to the
fMRI activity corresponding to peak 1. Total is the spatial sum of Peak 1 and Peak
2 where regions of their overlap are calculated only once.

Fig. 4. Divergences of the fMRI differential activity corresponding to
the EEG and MEG differential activity divergences. Time points of
180 ms, 370 ms and 390 ms, around which EEG and MEG data was
sampled, are presented in colours. The percent indicates the spatial sum
of these time points taking into account their spatial overlap.

corresponding values were 84%, 75% and 80% (Table II,
Fig. 3).
Considering the divergence (spatial sources) of gradient

vectors for MEG and fMRI (Table III, Fig. 4), 62%, 39%
and 52% of the fMRI divergence overlapped with the first,
the second and the third MEG peaks respectively. Taking
into account the overlaps of 46–65% between peaks, the
MEG divergence corresponded to 80% of the fMRI diver-
gence.
Thus, depending on the direction of the gradient pro-

jection, 75–84% of the fMRI differential activity over-
lapped with the MEG differential activity. The overlap of
the divergence between fMRI and MEG was 80%.
As both positive and negative deviations in EEG and

MEG reflect an increase of neural activity, we tried other
methods of calculation, inversing the signs and taking the
absolute values of the EEG and MEG distributed source
reconstruction spatial maps. Both of these methods turned
out to be less efficient in explaining the differential fMRI
activity, the summary explanatory percent being only about
40–50. For instance, if there are two neighbouring voxels
with activity levels of −5 and 7, the original analysis gives
the gradient value of 12, the absolute values analysis gives
the gradient value between 5 and 7, a difference of only
2, and the inversed sign analysis gives the gradient value
between 5 and −7, which has the same value of 12, but the
gradient vector points to the voxel 5 instead of the voxel 7
in the original analysis. Thus, the absolute value analysis
decreased the correspondence with fMRI by the decreased
gradient values, and the inversed sign analysis decreased
the spatial correspondence with fMRI gradients.
In the supplementary analysis of the fMRI-MEG audi-

tory dataset, the overlap between gradient projections was
56–100% (mean 80%) with 96% overlap for the diver-
gence (Table IV). In the simultaneous EEG-fMRI dataset,
the overlap between gradient projections was 51–100%
(mean 72%) and 100% for the divergence (Table V).
If one considers all the fMRI-M/EEG comparisons in

the datasets of this study, the mean overlap for the gradient
projections for EEG is 79±10% (p < 0�05, bootstrap bias

J. Neurosci. Neuroeng., 2, 1–12, 2014 7
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Table II. Percent of the fMRI differential activity corresponding to the MEG differential activity.

Peak 1 (%) Peak 2 (%) Peak 3 (%) Overlap 1–2 (%) Overlap 2–3 (%) Overlap 1–3 (%) Total (%)

Positive directions

X 55 50 47 65 53 66 77
Y 48 61 62 66 83 76 81
Z 40 45 40 33 55 57 76

Negative directions
X 47 45 59 46 70 60 84
Y 53 32 42 28 69 48 75
Z 49 53 53 50 74 67 80

Notes: X, Y , Z indicate the images of the projections of the gradient vector on the axes, in positive and negative directions. Peak 1 of MEG activity corresponds to 170–190
ms, Peak 2 to 360–380 ms and Peak 3 to 380–400 ms. Overlap is indicated with respect to the fMRI activity corresponding to the earlier peak. Total is the spatial sum of
Peak 1, Peak 2 and Peak 3 where regions of their overlap are calculated only once.

Table III. Percent of the divergences in fMRI corresponding to the EEG and MEG divergences.

Divergence Peak 1 (%) Peak 2 (%) Peak 3 (%) Overlap 1–2 (%) Overlap 2–3 (%) Overlap 1–3 (%) Total (%)

EEG 70 38 17 95
MEG 62 39 52 46 65 63 80

Note: Peak 1 of MEG activity corresponds to 170–190 ms, Peak 2 to 360–380 ms and Peak 3 to 380–400 ms. Overlap is indicated with respect to the fMRI activity
corresponding to the earlier peak. Total is the spatial sum of Peak 1, Peak 2 and Peak 3 where regions of their overlap are calculated only once.

corrected and accelerated confidence intervals [37]) and
for MEG, 79± 7% (p < 0�05). The mean overlap for the
divergences in the EEG and MEG datasets is 93±7% (p<
0�05).

DISCUSSION
In this study, we compared the fMRI, EEG, and MEG
spatial differential activity during an identical task of face
processing. After the conventional fMRI analysis, dis-
tributed source reconstruction [32] was used to obtain the
3-dimensional models of electric and magnetic activity in
EEG and MEG. Then we performed a gradient vector cal-
culation for the spatial maps of fMRI, EEG, and MEG.
Decomposing the gradient vector into its projections on
the X, Y , and Z axes, we estimated, for each axis, the
percentage of fMRI data corresponding to the spatial sum
of the sampled activities in EEG and MEG.

Table IV. Percent of the fMRI differential activity corresponding to the MEG differential activity in the auditory dataset.

Peak 1 (%) Peak 2 (%) Peak 3 (%) Overlap 1–2 (%) Overlap 2–3 (%) Overlap 1–3 (%) Total (%)

Positive directions
X 61 61 100 100 100 100 100
Y 28 68 79 100 100 100 79
Z 60 62 81 99 94 96 85

Negative directions
X 44 55 44 100 80 100 56
Y 53 51 58 98 97 95 60
Z 100 100 100 100 100 100 100

Divergence
47 32 39 68 93 77 96

Note: Total is the spatial sum of Peak 1, Peak 2 and Peak 3 where regions of their overlap are calculated only once.

Our results suggest a close link between the spatial dif-
ferential activity (spatial gradients) measured using dif-
ferent neuroimaging techniques. For the main dataset, we
showed that 74–93% of the fMRI differential activity over-
laps with EEG and 75–84% overlaps with MEG differ-
ential activity. In addition, 95% of divergences (spatial
sources of gradient vectors) in fMRI overlap with the EEG
divergences and 80% overlap with the MEG divergences.
High overlaps were also detected in the supplementary
datasets with different stimulation paradigms. If one con-
siders all the fMRI-M/EEG comparisons, including the
supplementary datasets of this study, the mean overlap for
the gradient projections for EEG is 79± 10% (p < 0�05)
and for MEG, 79±7% (p < 0�05). The mean overlap for
the divergences in the EEG and MEG datasets is 93±7%
(p < 0�05).
The high overlap between different modalities is in line

with the idea that, for different measurements of brain
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Table V. Percent of the fMRI differential activity corresponding to the EEG differential activity in the simultaneous fMRI-EEG dataset.

Peak 1 (%) Peak 2 (%) Peak 3 (%) Overlap 1–2 (%) Overlap 2–3 (%) Overlap 1–3 (%) Total (%)

Positive directions
X 33 6 56 17 100 100 56
Y 66 25 54 78 100 81 67
Z 55 53 53 93 96 94 57

Negative directions
X 100 100 100 100 100 100 100
Y 46 52 51 100 100 100 51
Z 100 100 100 100 100 100 100

Divergence
100 100 92 100 92 92 100

Note: Total is the spatial sum of Peak 1, Peak 2 and Peak 3 where regions of their overlap are calculated only once.

activity, the greatest activity difference in space should
be at the loci receiving the informational input, which
anatomically corresponds to the input from the long- or
short-range connections [9]. The high spatial increase of
activity in these regions stems from the fact that there
is a small amount of activity in neural pathways com-
pared with the activity in specialized neuroglial popula-
tions where the pathways terminate [5, 6]. Besides, this
corresponds to the evidence that the BOLD signal mostly
reflects the inputs to the neural populations of the cor-
tex [13] and that the EEG signal reflects the post-synaptic
potentials of the cortical neurons [14]. Thus, the novel
method of spatial differentiation (spatial gradients) reveals
the task-related distribution of information inputs to the
cortex on the basis of the complex network of anatomical
pathways within the brain. Compared with classical acti-
vations, this method provides a complementary view of
the functional organisation of brain activity, emphasizing
the task-related changes of activity propagation along the
pathways at their arrival loci in the specialized neuroglial
populations. As these results correspond to the spatial sum
of the peak activities in EEG and MEG, they suggest a
novel link between the spatial and temporal properties of
brain activity in light of the local differences of activity
between the neighbouring voxels.

Relationship Between the Fields of Metabolic and
Electromagnetic Activities
Along with methodological issues, the fundamental issue
we consider in this article is whether the spatial distribu-
tion of the gradient vectors of fMRI activity corresponds
to the spatial distribution of the gradient vectors of elec-
tric and magnetic activities. Our results suggest that the
gradient of the mean BOLD signal can be expressed as
the spatial sum of the gradients of electric and magnetic
fields at different points in time. The BOLD signal reflects
the metabolic demands of the brain, thereby enabling the
measurement of metabolic energy.
Our results suggest that the spatial distribution of gra-

dients in the fMRI activity may significantly overlap the
EEG and the MEG differential activity. In our previous

study [4], when comparing the results of the activation
analysis with the results for the spatial differentiation (gra-
dient) analysis, we showed that the latter provided addi-
tional information about brain activity. The results of this
study confirm the potential importance of the proposed
method to clarify details about the distribution and dynam-
ics of brain response and, in particular, about the directions
of information-related activity distribution in the brain.
Also, a potentially important output of this analysis is the
localization of the sites in the brain cortex with a sig-
nificant divergence of gradient vectors. According to the
aforementioned conception of activity inputs, there is a net
outflow of activity in these sites to the neighboring brain
structures.
Since EEG and MEG peaks can be considered to be

the temporal property of brain activity, their close link
with the average fMRI activity in our study confirms a
link between the temporal and spatial properties of brain
activity. The spatial differential analysis for each peak in
M/EEG indicates the gradient for each voxel at this point
in time. When considering the activity gradients as reflec-
tors of activity input paths in the brain, one can say that
the temporal distributions of activity inputs observed in
EEG form the average path of activity input as indicated
by the vector analysis of fMRI activity.
As can be seen in Tables I and II of the main dataset

analysis, as well as in Tables IV and V of the supplemen-
tary datasets analyses, the gradients of the M/EEG activ-
ity for each peak are combined to form the gradients of
fMRI activity. Each volume within the fMRI activity cor-
responds either to the overlap between different M/EEG
peaks (which can be from 21% to 100% according to
our data) or only to one peak in M/EEG. This presence
or absence of overlap between the gradient projections of
the peaks within the fMRI gradient projections can also
be clearly observed in Figures 2 and 3. One could sug-
gest that gradients of fMRI activity per small volume cor-
respond to the sum of gradients in the M/EEG activity,
with a specific weight for the gradient of each peak. We
believe that this relationship is not specific to fMRI but
should be true for any measurement of brain metabolic
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Fig. 5. A one-dimensional model of activity propagation in a given
direction. Three voxels are presented along the horizontal X axis. Voxels
1 and 2 serve to transmit the signal to the specialized neuroglial popula-
tion in voxel 3. The vertical time axis shows that the small increase of
energy in voxel 1 is followed by the small increase of energy in voxel
2, followed by the large increase of energy in voxel 3. In voxel 3, the
increase of electromagnetic energy received as a signal from voxel 2 is
amplified using metabolic energy. The arrow pointing from voxel 2 cor-
responds to the gradient vector calculated in the present analysis, which
indicates the direction of the greatest energy increase in the neighbour-
hood of voxel 2.

activity (e.g., with PET), and we propose a 1-dimensional
model of activity propagation in the brain (see Fig. 5 and
Section 2.5 of Experimental details) to help explain the
link between electromagnetic and metabolic energy for any
direction in the brain. In this model of activity propaga-
tion, metabolic energy is transformed into electromagnetic
energy, amplifying it in the specialized neuroglial popula-
tion. From this model, it is evident that metabolic energy
gradients between voxels correspond to the direction of
electromagnetic inputs to the specialized neuroglial popu-
lations [34].

Fusion of the fMRI, EEG, and MEG Data
M/EEG and fMRI fusion for the classical non-
differentiated activity presents an expanding field of
methodological and theoretical research; however, this
fusion is complex because each method is only an approxi-
mate measure of neuronal activity. While M/EEG has high
temporal but low spatial precision, fMRI has higher spa-
tial precision based on the complex relationship between
metabolism, oxygenation and blood flow, but provides
temporally smoothed correlates of neuronal activity. To
place our study in the context of the M/EEG and fMRI
fusion studies, one should note that M/EEG–fMRI fusion
approaches can be classified as [38]:
(1) asymmetric EEG to fMRI approaches,
(2) asymmetric fMRI to M/EEG approaches and
(3) symmetric fusion approaches.

M/EEG to fMRI approaches aim to benefit from the high
temporal resolution of M/EEG, while fMRI to M/EEG
approaches exploit the higher spatial precision of fMRI.
Because we are interested in the spatial distribution
of time-averaged gradients, our approach can be classi-
fied as an fMRI to M/EEG approach. Symmetric fusion
approaches use generative models of neuronal activity to
simulate both fMRI and M/EEG signals (e.g., on the
basis of post-synaptic activity modelling [28], the number
of active synapses per voxel [33] and the mechanisms of
oscillatory activity [39, 40]). These generative models of
neuronal activity present an opportunity for further elab-
oration of the spatial differentiation approach described
herein.
The discrepancy between the EEG and MEG waveforms

observed in this study already exists in the classical analy-
sis (see the SPM8 manual). Our spatial differential analy-
sis also revealed differences between EEG and MEG with
respect to the fMRI clusters. The most striking difference
can be observed in Figure 3 for the Z-axis negative projec-
tions: the occipital cluster in fMRI corresponds to the early
peak in EEG and to the late peak in MEG. On the other
hand, for the occipital cluster of the Y projections in the
same figure, both the EEG and MEG data include the same
peaks at 180 ms. The comparison between EEG and MEG
is not related to the question of this study; however, it is
noteworthy that the observed difference in time course and
spatial distribution between EEG and MEG is not due to
the spatially uncoupled electric and magnetic fields, which
is physically impossible, but is due to the technical con-
straints of the techniques: while EEG has cortical genera-
tors in the superficial layers of the cortex (dipoles, mostly
radial to the scalp surface), MEG cortical generators are in
the vertical walls of the cortical sulci (dipoles tangential to
the scalp surface) [41]. Besides, there are other potentially
important differences in the nature of the MEG and EEG
signals (see [15] for discussion of MEG). For example, the
magnetic permeability of tissues is practically the same
as that of empty space, thus the MEG signal is not dis-
torted as it passes through tissue layers inside and outside
the brain. On the contrary, the EEG signal on the scalp is
distorted by many layers of various tissues (white matter,
gray matter, meninges, cerebrospinal fluid) because they
have different degrees of resistance.

Methodological Peculiarities of This Study
Several methodological constraints, which are important
for the interpretation of these results, concern spatial
reconstruction, contrasting with the baseline, source anal-
ysis, and temporal averaging of activity.
The spatial comparison in 3-dimensional space presents

a certain methodological problem because the data on elec-
tric and magnetic potentials in EEG and MEG are obtained
using electrodes on the scalp. One needs to reconstruct the
3-dimensional distribution of electric and magnetic activ-
ity in the brain from the scalp data. In addition, fMRI
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provides a single activity level per voxel in the statistical
map, while EEG and MEG present in each voxel a time
course of brain activity. Consequently, to obtain a single
value per voxel, we had to take samples of the time course
in EEG and MEG data and then compare these values with
the fMRI spatial maps. These have inevitable limitations
due to the different constraints of the techniques, which
are compared in the study: the coarse-graining of time by
fMRI/BOLD and the coarse-graining of space by EEG and
MEG [42].
Contrast with the baseline for the images with gradi-

ents of activity is important because such differences exist
even at rest due to the physiological differences in the
metabolism levels between the white matter and the cor-
tex. Thus, the task-specific analysis should include con-
trast with the baseline activity (scrambled faces in the data
analysed here).
One should distinguish the source analysis in EEG and

MEG from the spatial sources (divergences) in this study.
The source analysis of EEG and MEG seeks out the
sources in the brain that create the distribution of electric
and magnetic energy on the scalp. Thus, its aim is to pass
from the scalp to the space within the brain. Our analysis
of spatial sources (divergences) is completely within the
space of the brain and indicates brain clusters where the
net flow of metabolic, electric, or magnetic energy from
the particular voxels is outside (i.e., to the neighboring
voxels).
Our approach does not use the temporal dimension

because we consider the average brain activity for the
given stimulation. In some previous studies, the optical
flow equation, which includes gradients, was applied to
the M/EEG data [43]. Although the computational base
has similar features, optical flow analysis includes the tem-
poral dimension and is not applicable to the temporally
smoothed and averaged fMRI data. Thus, we do not com-
pute activity flows per se, but rather the stable spatial
directions of the flows (i.e., the directions along the paths
at their loci of cortical input).
To find the optimal methodological pipeline, we used

the existing datasets, which are very rare for multimodal
stimulation with exactly the same stimuli. The statistical
group analysis for specific stimulation would be the further
application of this pipeline and will require a separate,
specially designed study.

CONCLUSIONS
Our study provides further support that computation of
brain activity gradients is a solid method that can be
applied to different neuroimaging studies. In addition to
studies of normal brain activity, this method of spatial dif-
ferentiation can be used to clarify the topographies of brain
activity in various diseases where the brain metabolism
is estimated in 3-dimensional space using neuroimag-
ing techniques. For example, a particularly interesting

application of this method could be the localisation of
activity sources in epilepsy [44]. The existing neuroimag-
ing methods localize only the areas of increased activity in
epilepsy; sources of this activity are thought to be some-
where inside or nearby, with their precise location remain-
ing unclear (see [45] for discussion). In brain lesions, the
present analysis may help estimate the compensatory reor-
ganisation of brain function by demonstrating the direc-
tions of such reorganisation as well as the new sources
from which the brain activity propagates. Thus, the pro-
posed analysis of gradients and their sources in the brain
could be widely used in medical research.
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